Segmentation of retinal OCT images using a random forest classifier

نویسندگان

  • Andrew Lang
  • Aaron Carass
  • Elias Sotirchos
  • Peter A. Calabresi
  • Jerry L. Prince
چکیده

Optical coherence tomography (OCT) has become one of the most common tools for diagnosis of retinal abnormalities. Both retinal morphology and layer thickness can provide important information to aid in the differential diagnosis of these abnormalities. Automatic segmentation methods are essential to providing these thickness measurements since the manual delineation of each layer is cumbersome given the sheer amount of data within each OCT scan. In this work, we propose a new method for retinal layer segmentation using a random forest classifier. A total of seven features are extracted from the OCT data and used to simultaneously classify nine layer boundaries. Taking advantage of the probabilistic nature of random forests, probability maps for each boundary are extracted and used to help refine the classification. We are able to accurately segment eight retinal layers with an average Dice coefficient of 0.79 ± 0.13 and a mean absolute error of 1.21 ± 1.45 pixels for the layer boundaries.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Retinal layer segmentation of macular OCT images using boundary classification

Optical coherence tomography (OCT) has proven to be an essential imaging modality for ophthalmology and is proving to be very important in neurology. OCT enables high resolution imaging of the retina, both at the optic nerve head and the macula. Macular retinal layer thicknesses provide useful diagnostic information and have been shown to correlate well with measures of disease severity in seve...

متن کامل

Retinal Fluid Segmentation and Detection in Optical Coherence Tomography Images using Fully Convolutional Neural Network

As a non-invasive imaging modality, optical coherence tomography (OCT) can provide micrometer-resolution 3D images of retinal structures. Therefore it is commonly used in the diagnosis of retinal diseases associated with edema in and under the retinal layers. In this paper, a new framework is proposed for the task of fluid segmentation and detection in retinal OCT images. Based on the raw image...

متن کامل

Automated Tumor Segmentation Based on Hidden Markov Classifier using Singular Value Decomposition Feature Extraction in Brain MR images

ntroduction: Diagnosing brain tumor is not always easy for doctors, and existence of an assistant that                                                      facilitates the interpretation process is an asset in the clinic. Computer vision techniques are devised to aid the clinic in detecting tumors based on a database of tumor c...

متن کامل

Extracting Vessel Centerlines From Retinal Images Using Topographical Properties and Directional Filters

In this paper we consider the problem of blood vessel segmentation in retinal images. After enhancing the retinal image we use green channel of images for segmentation as it provides better discrimination between vessels and background. We consider the negative of retinal green channel image as a topographical surface and extract ridge points on this surface. The points with this property are l...

متن کامل

Hierarchical retinal blood vessel segmentation based on feature and ensemble learning

Segmentation of retinal blood vessels is of substantial clinical importance for diagnoses of many diseases, such as diabetic retinopathy, hypertension and cardiovascular diseases. In this paper, the supervised method is presented to tackle the problem of retinal blood vessel segmentation, which combines two superior classifiers: Convolutional Neural Network (CNN) and Random Forest (RF). In this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of SPIE--the International Society for Optical Engineering

دوره 8669  شماره 

صفحات  -

تاریخ انتشار 2013